Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что:
а)  a = r(ctg($ \beta$/2) + ctg($ \gamma$/2)) = r cos($ \alpha$/2)/(sin($ \beta$/2)sin($ \gamma$/2));
б)  a = ra(tg($ \beta$/2) + tg($ \gamma$/2)) = racos($ \alpha$/2)/(cos($ \beta$/2)cos($ \gamma$/2));
в)  p - b = rctg($ \beta$/2) = ratg($ \gamma$/2);
г)  p = ractg($ \alpha$/2).

Вниз   Решение


На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

ВверхВниз   Решение


Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на одной прямой (Папп).

ВверхВниз   Решение


Докажите, что  27Rr $ \leq$ 2p2 $ \leq$ 27R2/2.

ВверхВниз   Решение


Из листа клетчатой бумаги размером 29×29 клеток вырезано 99 квадратиков размером 2×2 клетки. Докажите, что из него можно вырезать еще один такой квадратик.

ВверхВниз   Решение


Начало координат является центром симметрии выпуклой фигуры площадью более 4. Докажите, что эта фигура содержит хотя бы одну точку с целыми координатами, отличную от начала координат.

ВверхВниз   Решение


На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

ВверхВниз   Решение


Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A1 на прямой l1. Постройте треугольник ABC так, чтобы точка A1 была серединой его стороны BC, а прямые l1, l2 и l3 были серединными перпендикулярами к сторонам.

ВверхВниз   Решение


Дано n прямых. Постройте n-угольник, для которого эти прямые являются: а) серединными перпендикулярами к сторонам; б) биссектрисами внешних или внутренних углов при вершинах.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



Задача 57893  (#17.026)

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Две прямые пересекаются под углом $ \gamma$. Кузнечик прыгает с одной прямой на другую; длина каждого прыжка равна 1 м, и кузнечик не прыгает обратно, если только это возможно. Докажите, что последовательность прыжков периодична тогда и только тогда, когда $ \gamma$/$ \pi$ — рациональное число.
Прислать комментарий     Решение


Задача 57894  (#17.027)

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

а) Впишите в данную окружность n-угольник, стороны которого параллельны заданным n прямым.
б) Через центр O окружности проведено n прямых. Постройте описанный около окружности n-угольник, вершины которого лежат на этих прямых.
Прислать комментарий     Решение


Задача 57895  (#17.028)

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Дано n прямых. Постройте n-угольник, для которого эти прямые являются: а) серединными перпендикулярами к сторонам; б) биссектрисами внешних или внутренних углов при вершинах.
Прислать комментарий     Решение


Задача 57896  (#17.029)

Тема:   [ Композиции симметрий ]
Сложность: 6
Классы: 9

Впишите в данную окружность n-угольник, одна из сторон которого проходит через данную точку, а остальные стороны параллельны данным прямым.
Прислать комментарий     Решение


Задача 57897  (#17.030)

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 9

Точка A расположена на расстоянии 50 см от центра круга радиусом 1 см. Разрешается отразить точку симметрично относительно любой прямой, пересекающей круг. Докажите, что: а) за 25 отражений точку A можно к загнатьк внутрь данного круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .