ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности с центром O даны точки A1,..., An, делящие ее на равные дуги, и точка X. Докажите, что точки, симметричные X относительно прямых OA1,..., OAn, образуют правильный многоугольник.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



Задача 57898  (#17.031)

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 9

На окружности с центром O даны точки A1,..., An, делящие ее на равные дуги, и точка X. Докажите, что точки, симметричные X относительно прямых OA1,..., OAn, образуют правильный многоугольник.
Прислать комментарий     Решение


Задача 78015  (#17.031B)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Многоугольники ]
Сложность: 3
Классы: 9

Сколько осей симметрии может иметь семиугольник?
Прислать комментарий     Решение


Задача 57900  (#17.032)

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 4
Классы: 9

Докажите, что если плоская фигура имеет ровно две оси симметрии, то эти оси перпендикулярны.
Прислать комментарий     Решение


Задача 77881  (#17.033)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Основные свойства центра масс ]
Сложность: 4-
Классы: 8,9,10

Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57902  (#17.034)

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 4+
Классы: 9

Докажите, что если многоугольник имеет четное число осей симметрии, то он имеет центр симметрии.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .