Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .

Вниз   Решение


Автор: Гарбер М.

В классе учится 15 мальчиков и 15 девочек. В день 8 Марта некоторые мальчики позвонили некоторым девочкам и поздравили их с праздником (никакой мальчик не звонил одной и той же девочке дважды). Оказалось, что детей можно единственным образом разбить на 15 пар так, чтобы в каждой паре оказались мальчик с девочкой, которой он звонил. Какое наибольшее число звонков могло быть сделано?

ВверхВниз   Решение


Две прямые пересекаются под углом $ \gamma$. Кузнечик прыгает с одной прямой на другую; длина каждого прыжка равна 1 м, и кузнечик не прыгает обратно, если только это возможно. Докажите, что последовательность прыжков периодична тогда и только тогда, когда $ \gamma$/$ \pi$ — рациональное число.

ВверхВниз   Решение


Окружность пересекает прямые BC, CA, AB в точках A1 и A2, B1 и B2, C1 и C2. Пусть la — прямая, соединяющая точки пересечения прямых BB1 и CC2, BB2 и CC1; прямые lb и lc определяются аналогично. Докажите, что прямые la, lb и lc пересекаются в одной точке (или параллельны).

ВверхВниз   Решение


Докажите, что  ha $ \leq$ $ \sqrt{r_br_c}$.

ВверхВниз   Решение


Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.

ВверхВниз   Решение


На плоскости дана окружность и не пересекающая ее прямая. Докажите, что существует проективное преобразование, переводящее данную окружность в окружность, а данную прямую — в бесконечно удаленную прямую.

ВверхВниз   Решение


Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.

ВверхВниз   Решение


По арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов его поворотов не меньше 2998 радиан.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 11]      



Задача 57954

Тема:   [ Поворот (прочее) ]
Сложность: 7
Классы: 9

По арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов его поворотов не меньше 2998 радиан.
Прислать комментарий     Решение


Страница: << 1 2 3 [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .