ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



Задача 57959  (#18.037)

Тема:   [ Композиции поворотов ]
Сложность: 4
Классы: 9

Внутри выпуклого четырехугольника ABCD построены равнобедренные прямоугольные треугольники ABO1, BCO2, CDO3 и DAO4. Докажите, что если O1 = O3, то O2 = O4.
Прислать комментарий     Решение


Задача 57960  (#18.038)

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

а) На сторонах произвольного треугольника внешним образом построены правильные треугольники. Докажите, что их центры образуют правильный треугольник.
б) Докажите аналогичное утверждение для треугольников, построенных внутренним образом.
в) Докажите, что разность площадей правильных треугольников, полученных в задачах а) и б), равна площади исходного треугольника.
Прислать комментарий     Решение


Задача 57961  (#18.039)

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

На сторонах треугольника ABC построены правильные треугольники A'BC и B'AC внешним образом, C'AB — внутренним, M — центр треугольника C'AB. Докажите, что A'B'M — равнобедренный треугольник, причем $ \angle$A'MB' = 120o.
Прислать комментарий     Решение


Задача 57962  (#18.040)

Тема:   [ Композиции поворотов ]
Сложность: 5
Классы: 9

Пусть углы $ \alpha$, $ \beta$, $ \gamma$ таковы, что 0 < $ \alpha$,$ \beta$,$ \gamma$ < $ \pi$ и  $ \alpha$ + $ \beta$ + $ \gamma$ = $ \pi$. Докажите, что если композиция поворотов RC2$\scriptstyle \gamma$oRB2$\scriptstyle \beta$oRA2$\scriptstyle \alpha$ является тождественным преобразованием, то углы треугольника ABC равны $ \alpha$, $ \beta$, $ \gamma$.
Прислать комментарий     Решение


Задача 57963  (#18.041)

Тема:   [ Композиции поворотов ]
Сложность: 5+
Классы: 9

Постройте n-угольник, если известны n точек, являющихся вершинами равнобедренных треугольников, построенных на сторонах этого n-угольника и имеющих при вершинах углы $ \alpha_{1}^{}$,...,$ \alpha_{n}^{}$.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .