Страница: 1 2 >> [Всего задач: 8]
На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата.
Найдите величину угла MAK.
На сторонах BC и CD квадрата ABCD взяты точки M
и K соответственно, причем
BAM =
MAK. Докажите,
что BM + KD = AK.
В треугольнике ABC проведены медиана CM и высота CH.
Прямые, проведенные через произвольную точку P плоскости
перпендикулярно CA, CM и CB, пересекают прямую CH
в точках A1, M1 и B1. Докажите, что
A1M1 = B1M1.
Два квадрата BCDA и BKMN имеют общую вершину B.
Докажите, что медиана BE треугольника ABK и высота BF
треугольника CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
На плоскости даны три (одинаково ориентированных) квадрата:
ABCD,
AB1C1D1 и
A2B2CD2; первый квадрат
имеет с двумя другими общие вершины A и C. Докажите,
что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.
Страница: 1 2 >> [Всего задач: 8]