ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Значение многочлена Pn(x) = anxn + an–1xn–1 + ... + a1x + a0 (an ≠ 0) в точке x = c можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде Pn(x) = (...(anx + an–1)x + ... + a1)x + a0. Пусть bn, bn–1, ..., b0 – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть bn = an, bk = cbk+1 + ak (k = n – 1, ..., 0). Докажите, что при делении многочлена Pn(x) на x – c с остатком, у многочлена в частном коэффициенты будут совпадать с числами bn–1, ..., b1, а остатком будет число b0. Таким образом, будет справедливо равенство: На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что AB = AK. Отрезок AK пересекает биссектрису CL в её середине. Докажите, что для любого натурального числа n > 1 найдутся такие натуральные числа a, b, c, d, что a + b = c + d = ab – cd = 4n. На сторонах произвольного треугольника ABC вне
его построены равнобедренные треугольники A'BC, AB'C
и ABC' с вершинами A', B' и C' и углами |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 53]
На сторонах произвольного треугольника ABC вне
его построены равнобедренные треугольники A'BC, AB'C
и ABC' с вершинами A', B' и C' и углами
Пусть AKL и AMN — подобные равнобедренные
треугольники с вершиной A и углом
На сторонах AB, BC и CA треугольника ABC
взяты точки P, Q и R соответственно. Докажите, что центры
описанных окружностей треугольников APR, BPQ и CQR
образуют треугольник, подобный треугольнику ABC.
Страница: << 5 6 7 8 9 10 11 [Всего задач: 53]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке