ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи От A до B 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до A и до B:
Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов. Дано n попарно не сонаправленных векторов (n На отрезке длиной 1 закрашено несколько отрезков,
причем расстояние между любыми двумя закрашенными
точками не равно 0, 1. Докажите, что сумма длин закрашенных
отрезков не превосходит 0, 5.
В трапеции ABCD стороны BC и AD параллельны,
M — точка пересечения биссектрис углов A и B, N —
точка пересечения биссектрис углов C и D. Докажите, что
2MN = | AB + CD - BC - AD|.
Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника. Даны окружность S, точки A и B на ней и точка C
хорды AB. Для каждой окружности S', касающейся хорды AB
в точке C и пересекающей окружность S в точках P
и Q, рассмотрим точку M пересечения прямых AB и PQ.
Докажите, что положение точки M не зависит от выбора
окружности S'.
Вершины многоугольника (не обязательно выпуклого) расположены в узлах
целочисленной решетки. Внутри его лежит n узлов решетки, а на
границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула
Пика).
|
Страница: << 1 2 3 4 >> [Всего задач: 18]
Вершины выпуклого многоугольника расположены в узлах целочисленной решётки,
причём ни одна из его сторон не проходит по линиям решётки. Докажите, что сумма
длин горизонтальных отрезков линий решётки, заключённых внутри многоугольника,
равна сумме длин вертикальных отрезков.
Вершины многоугольника (не обязательно выпуклого) расположены в узлах
целочисленной решетки. Внутри его лежит n узлов решетки, а на
границе m узлов. Докажите, что его площадь равна n + m/2 - 1 (формула
Пика).
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
Вершины треугольника ABC расположены в узлах
целочисленной решетки, причем на его сторонах других
узлов нет, а внутри его есть ровно один узел O. Докажите,
что O — точка пересечения медиан треугольника ABC.
Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Страница: << 1 2 3 4 >> [Всего задач: 18]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке