Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что

$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right.$$\displaystyle {\frac{a+b}{c}}$ = cos$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a+b}{c}=\cos\frac{\alpha -\beta }{2}
}\right/$sin$\displaystyle {\frac{\gamma }{2}}$,    и    $\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right.$$\displaystyle {\frac{a-b}{c}}$ = sin$\displaystyle {\frac{\alpha -\beta }{2}}$$\displaystyle \left.\vphantom{\frac{a-b}{c}=
\sin\frac{\alpha -\beta }{2}}\right/$cos$\displaystyle {\frac{\gamma }{2}}$.


Вниз   Решение


На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE; M и P — середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

ВверхВниз   Решение


Показать, что  271958 – 108878 + 101528  делится на 26460.

ВверхВниз   Решение


На плоскости дано несколько правильных n-угольников. Докажите, что выпуклая оболочка их вершин имеет не менее n углов.

ВверхВниз   Решение


На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.

ВверхВниз   Решение


Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.

ВверхВниз   Решение


Имеется пять звеньев цепи по 3 кольца в каждом. Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

ВверхВниз   Решение


Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



Задача 58220  (#25.001)

Тема:   [ Равносоставленные фигуры ]
Сложность: 2
Классы: 8,9

Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.
Прислать комментарий     Решение


Задача 58221  (#25.002)

Темы:   [ Равносоставленные фигуры ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9

Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).

Прислать комментарий     Решение

Задача 58222  (#25.003)

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9

Разрежьте правильный треугольник шестью прямыми на части и сложите из них 7 одинаковых правильных треугольников.
Прислать комментарий     Решение


Задача 58223  (#25.004)

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте правильный шестиугольник на 5 частей и сложите из них квадрат.
Прислать комментарий     Решение


Задача 58224  (#25.005)

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .