ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 58300

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9

Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
Прислать комментарий     Решение


Задача 58301

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше 0, 499SABC?
Прислать комментарий     Решение


Задача 58302

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

На бесконечном листе клетчатой бумаги (размер клетки 1×1) укладываются кости домино размером 1×2 так, что они накрывают все клетки. Можно ли при этом добиться того, чтобы любая прямая, идущая по линиям сетки, разрезала лишь конечное число костей?
Прислать комментарий     Решение


Задача 58303

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?
Прислать комментарий     Решение


Задача 58304

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 5
Классы: 8,9

На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .