ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вписанная окружность касается стороны BC
треугольника ABC в точке K. Докажите, что площадь треугольника
равна
BK . KCctg( ABC - прямоугольный треугольник с прямым углом C. Докажите, что
c/r Квадратный трехчлен y = ax² + bx + c не имеет корней и а + b + c > 0. Найдите знак коэффициента с. Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Докажите, что Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте? Докажите, что для прямоугольного треугольника
0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
Пусть
Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой,
проходящей через данные точки B и C.
Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что
f =
где |
Страница: 1 2 >> [Всего задач: 10]
Пусть точки A, B, C и D лежат на конике, заданной уравнением второй степени f = 0. Докажите, что
f =
где
Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то
точки пересечения продолжений его противоположных сторон (т. е. прямых AB и
DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).
а) Пусть точки A, B, C, D, E и F лежат на одной конике. Докажите,
что тогда прямые Паскаля шестиугольников ABCDEF, ADEBCF и ADCFEB
пересекаются в одной точке (Штейнер).
Пусть хорды KL и MN проходят через
середину O хорды AB. Докажите, что прямые KN и ML пересекают прямую
AB в точках, равноудаленных от точки O.
Пусть стороны самопересекающихся
четырехугольников KLMN и K'L'M'N', вписанных в одну и ту же окружность,
пересекают хорду AB этой окружности в точках P, Q, R, S и
P', Q', R', S'
соответственно (сторона KL — в точке P, LM — в точке Q,
и т. д.). Докажите, что если три из точек P, Q, R, S совпадают с
соответственными тремя из точек
P', Q', R', S', то и оставшиеся две точки тоже
совпадают. (Предполагается, что хорда AB не проходит через вершины
четырехугольников.)
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке