Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Вниз   Решение


Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

ВверхВниз   Решение


При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

ВверхВниз   Решение


На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



ВверхВниз   Решение


На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

ВверхВниз   Решение


Разложите  P(x + 3)  по степеням x, где  P(x) = x4x3 + 1.

ВверхВниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ВверхВниз   Решение


Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60306  (#01.033)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите неравенство:  2n > n.

Прислать комментарий     Решение

Задача 60307  (#01.034)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 60308  (#01.035)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

Прислать комментарий     Решение

Задача 60309  (#01.036)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 60310  (#01.037)

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .