ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Постройте правильный десятиугольник.
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб O – точка пересечения отрезков PR и QS. Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]
Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Докажите неравенство
Докажите неравенство 2m+n–2 ≥ mn, где m и n – натуральные числа.
Для каких n выполняются неравенства: а) n! > 2n; б) 2n > n².
Вычислите произведение
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке