Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны 120o. Доказать, что найдутся две его стороны, имеющие одинаковую длину.

Вниз   Решение


Если число     – целое, то и число     – целое. Доказать.

ВверхВниз   Решение


Сколько цифр имеет число 2100?

ВверхВниз   Решение


На стороне AB треугольника ABC отмечена точка K так, что  AB = CK.  Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что  KN = KP.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

ВверхВниз   Решение


Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

ВверхВниз   Решение


В трапецию ABCD вписана окружность. Продолжения боковых сторон трапеции AD и BC за точки D и C пересекаются в точке E. Периметр треугольника DCE и основание трапеции AB равны соответственно 60 и 20, угол ADC равен $ \beta$. Найдите радиус окружности.

ВверхВниз   Решение


Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .

ВверхВниз   Решение


Биссектрисы углов A и C трапеции ABCD пересекаются в точке P, а биссектрисы углов B и D – в точке Q, отличной от P.
Докажите, что если отрезок PQ параллелен основанию AD, то трапеция равнобокая.

ВверхВниз   Решение


Внутри прямоугольного треугольника ABC (угол B — прямой) взята точка D, причём площади треугольников ABD и BCD соответственно в три и в четыре раза меньше площади треугольника ABC. отрезки AD и DC равны соответственно a и c. Найдите BD.

ВверхВниз   Решение


Дана полуокружность с диаметром AB. С помощью циркуля и линейки постройте хорду MN, параллельную AB, так, чтобы трапеция AMNB была описанной.

ВверхВниз   Решение


Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 30378  (#04.023)

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

Прислать комментарий     Решение

Задача 60650  (#04.024)

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 7,8,9

Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.

Прислать комментарий     Решение

Задача 60651  (#04.025)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Докажите, что число 11...1 (1986 единиц) имеет по крайней мере
  а) 8;  б) 32 различных делителя.

Прислать комментарий     Решение

Задача 60652  (#04.026)

Тема:   [ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

Прислать комментарий     Решение

Задача 60653  (#04.027)

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ Малая теорема Ферма ]
Сложность: 3+
Классы: 8,9,10

Докажите, что
  а)  241 + 1  делится на 83;
  б)  270 + 370  делится на 13;
  в)  260 – 1  делится на 20801.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .