Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = an + $\displaystyle {\dfrac{1}{a_n^2}}$    (n $\displaystyle \geqslant$ 1).

Верно ли, что эта последовательность ограничена?

Вниз   Решение


Карточный фокус. а) Берется колода из 27 карт (без одной масти). Ваш друг загадывает одну из карт. После чего вы раскладываете все карты в три равные кучки, кладя каждый раз по одной карте (в первую кучку, затем во вторую, затем в третью, потом снова в первую и т. д.). Ваш друг указывает на ту кучку, в которой лежит его карта. Далее вы складываете все три кучки вместе, вставляя при этом указанную кучку между двумя другими. Эта процедура повторяется еще два раза. На каком месте в колоде окажется загаданная карта, после того, как вы сложите вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала было 3n (n < 9) карт?

ВверхВниз   Решение


Каждое из рёбер полного графа с 18 вершинами покрашено в один из двух цветов.
Докажите, что есть четыре вершины, все рёбра между которыми – одного цвета.

ВверхВниз   Решение


Для последовательности {an}

$\displaystyle \lim\limits_{n\to\infty}^{}$$\displaystyle \left(\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right.$an + 1 - $\displaystyle {\dfrac{a_n}{2}}$$\displaystyle \left.\vphantom{a_{n+1}-\dfrac{a_n}{2}}\right)$ = 0.

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = 0.

ВверхВниз   Решение


Докажите, что для любого плоского графа (в том числе и несвязного) справедливо неравенство  E ≤ 3V – 6.

ВверхВниз   Решение


Докажите, что для плоского связного графа справедливо неравенство  E ≤ 3V – 6.

ВверхВниз   Решение


Можно ли нарисовать правильный треугольник с вершинами в узлах квадратной сетки?

ВверхВниз   Решение


Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


ВверхВниз   Решение


Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

ВверхВниз   Решение


Докажите, что уравнение  x³ + x²y + y³ = 0  не имеет рациональных решений, кроме  (0, 0).

ВверхВниз   Решение


Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = $\displaystyle {\dfrac{3a_n}{4}}$ + $\displaystyle {\dfrac{1}{a_n}}$    (n $\displaystyle \geqslant$ 1).

Докажите, что
а) последовательность {an} ограничена;
б) | a1000 - 2| < $ \left(\vphantom{\dfrac{3}{4}}\right.$$ {\dfrac{3}{4}}$$ \left.\vphantom{\dfrac{3}{4}}\right)^{1000}_{}$.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

ВверхВниз   Решение


4 монеты. Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



Задача 60919  (#05.081)

Темы:   [ Теория игр (прочее) ]
[ Ним-сумма ]
[ Симметричная стратегия ]
Сложность: 6
Классы: 8,9,10,11

Имеется несколько кучек камней. Двое по очереди берут из них камни. За один ход разрешается взять из одной кучки от 1 до 5 камней. Определите выигрышную стратегию в этой игре, если тот, кто взял последний камень а) выигрывает; б) проыигрывает.

Прислать комментарий     Решение

Задача 60920  (#05.082)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

Пешечное противостояние. На доске 3×n расставлены n черных и n белых пешек так, как показано на рисунке:


\begin{picture}(100,30)
\multiput(0,0)(0,10){4}{\line(1,0){100}}
\multiput(0,0...
...5,5)(10,0){10}{\circle{5}}
\multiput(5,25)(10,0){10}{\circle*{5}}
\end{picture}
Пешки ходят и бьют по шахматным правилам, к которым добавляется одно: бить обязательно. Тот, кто не может сделать ход: а) выигрывает; б) проигрывает. Какой из игроков выигрывает в этой игре в зависимости от значения n?

Прислать комментарий     Решение

Задача 60921  (#05.083)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 6,7,8

4 монеты. Из четырех монет одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за два взвешивания на двухчашечных весах без гирь найти фальшивую монету.

Прислать комментарий     Решение

Задача 60922  (#05.084)

Тема:   [ Взвешивания ]
Сложность: 5
Классы: 8,9,10,11

12 монет. Из двенадцати монет одиннадцать настоящих, а одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за три взвешивания на двухчашечных весах без гирь найти фальшивую монету и выяснить, легче она или тяжелее настоящей.

Прислать комментарий     Решение

Задача 60923  (#05.085)

Тема:   [ Взвешивания ]
Сложность: 5
Классы: 8,9,10,11

13 монет. Предположим теперь, что имеется 13 монет, из которых одна — фальшивая. Как за три взвешивания на двухчашечных весах без гирь найти фальшивую монету, если не требуется выяснять, легче она или тяжелее настоящей?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .