ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два
ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них
учится лучше другого. Доказать, что число учеников в школе не больше Точка, лежащая внутри описанного n-угольника,
соединена отрезками со всеми вершинами и точками касания.
Образовавшиеся при этом треугольники попеременно окрашены
в красный и синий цвет. Докажите, что произведение площадей красных
треугольников равно произведению площадей синих треугольников.
Решить в натуральных числах уравнение x2y + (x + 1)2y = (x + 2)2y.
P(x) = 1 + x + не имеет кратных
корней.
|
Страница: 1 2 3 >> [Всего задач: 12]
Докажите, что корень a многочлена P(x) имеет кратность больше 1 тогда и только тогда, когда P(a) = 0 и P'(a) = 0.
Для данного многочлена P(x) опишем способ, который позволяет
построить многочлен R(x), который имеет те же корни, что и
P(x), но все кратности 1. Положим Q(x) = (P(x), P'(x)) и R(x) = P(x)Q–1(x). Докажите, что
Постройте многочлен R(x) из задачи 61019, если:
P(x) = 1 + x + не имеет кратных
корней.
При каких A и B многочлен Axn+1 + Bxn + 1 имеет число x = 1 не менее чем двукратным корнем?
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке