ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Метод Ньютона (см. задачу 9.77) не всегда позволяет приблизиться к корню уравнения f (x) = 0. Для многочлена f (x) = x(x - 1)(x + 1) найдите начальное условие x0 такое, что f (x0)x0 и x2 = x0. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Предположим, что цепные дроби сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена x² – px + q = 0. С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328): xn+1 = xn – = . Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов P0(x), P1(x), P2(x), ..., что P0(x) = P(x) и многочлен Pk(x) имеет корни Пусть Докажите, что а) б)
Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|