ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
года:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Калькулятор выполняет пять операций: сложение, вычитание, умножение, деление и извлечение квадратного корня. Найдите формулу, по которой на этом калькуляторе можно определить наименьшее из двух произвольных чисел a и b. Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными. Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году? Целые числа a и b таковы, что 56a = 65b. Докажите, что a + b – составное число. Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания. Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность. Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус вписанной сферы.
Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?
Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну. |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]
Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.
Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.
Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию?
Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.
Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и
14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке