ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
VIII Олимпиада по геометрии имени И.Ф. Шарыгина (2012 г.)
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что BC = CC1. Затем на катете AB отметили такую точку C2, что |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что BC = CC1. Затем на катете AB отметили такую точку C2, что
В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.
Пусть BM – медиана прямоугольного треугольника ABC (∠B = 90°). Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.
Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.
В выпуклом четырёхугольнике все стороны и все углы попарно различны.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|