ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике все стороны и все углы попарно различны.
  а) Может ли наибольший угол примыкать к наибольшей стороне, и при этом наименьший – к наименьшей?
  б) Может ли наибольший угол не примыкать к наименьшей стороне, и при этом наименьший не примыкать к наибольшей?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 64908  (#6)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

Прислать комментарий     Решение

Задача 64909  (#7)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

В неравнобедренном треугольнике ABC биссектрисы углов A и B обратно пропорциональны противолежащим сторонам. Найдите угол C.

Прислать комментарий     Решение

Задача 64910  (#8)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Пусть BM – медиана прямоугольного треугольника ABC  (∠B = 90°).  Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.

Прислать комментарий     Решение

Задача 64911  (#9)

Темы:   [ Треугольник (построения) ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

Прислать комментарий     Решение

Задача 64912  (#10)

Темы:   [ Четырехугольник (неравенства) ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9,10,11

В выпуклом четырёхугольнике все стороны и все углы попарно различны.
  а) Может ли наибольший угол примыкать к наибольшей стороне, и при этом наименьший – к наименьшей?
  б) Может ли наибольший угол не примыкать к наименьшей стороне, и при этом наименьший не примыкать к наибольшей?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .