|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством. Докажите, что следующие свойства тетраэдра равносильны: 1) все грани равновелики; 2) каждое ребро равно противоположному; 3) все грани равны; 4) центры описанной и вписанной сфер совпадают; 5) суммы углов при каждой вершине равны; 6) сумма плоских углов при каждой вершине равна 180o ; 7) развёртка тетраэдра представляет собой остроугольный треугольник, в котором проведены средние линии; 8) все грани – остроугольные треугольники с одинаковым радиусом описанной окружности; 9) ортогональная проекция тетраэдра на каждую из трёх плоскостей, параллельных двум противоположным рёбрам, – прямоугольник; 10) параллелепипед, полученный в результате проведения через противоположные рёбра трёх пар параллельных плоскостей, – прямоугольный; 11) высоты тетраэдра равны; 12) точка пересечения медиан совпадает с центром описанной сферы; 13) точка пересечения медиан совпадает с центром вписанной сферы; 14) сумма плоских углов при трёх вершинах равна 180o ; 15) сумма плоских углов при двух вершинах равна 180o и два противоположных ребра равны. Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69]
На рисунке изображен график функции y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.
Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?
Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.
Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?
В выражении x6 + x4 + xA замените А на одночлен так, чтобы получился полный квадрат. Найдите как можно больше решений.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|