ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 185]
У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?
Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 185] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|