ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC. Решение |
Страница: 1 2 3 >> [Всего задач: 12]
В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Страница: 1 2 3 >> [Всего задач: 12] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|