ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC. В угол вписаны три окружности Γ1, Γ2, Γ3 (радиус Γ1 наименьший, а радиус Γ3 наибольший), притом Γ2 касается Γ1 и Γ3 в точках A и B соответственно. Пусть l – касательная в точке A к Γ1. Рассмотрим все окружности ω, касающиеся Γ1 и l. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей ω и Γ3. Четырёхугольник ABCD вписан в окружность. Лучи BA и CD пересекаются в точке P. Прямая, проходящая через P и параллельная касательной к окружности в точке D, пересекает в точках U и V касательные, проведённые к окружности в точках A и B. Докажите, что окружности, описанные около треугольника CUV и четырёхугольника ABCD, касаются.
Из одной точки окружности проведены две хорды, равные 9 и 17. Найдите радиус окружности, если расстояние между серединами данных хорд равно 5.
Докажите, что любой прямоугольник можно разрезать на части и
сложить из них прямоугольник со стороной 1.
Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник. Квадрат разбит на n² ≥ 4 прямоугольников 2(n – 1) прямыми, из которых n – 1 параллельны одной стороне квадрата, а остальные n – 1 – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).
Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Найдите сумму отрезков BC и BD, если расстояние между центрами окружностей равно a, а центры окружностей лежат по разные стороны от общей хорды AB.
Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг. Точка M лежит на описанной окружности
треугольника ABC; R — произвольная точка. Прямые AR, BR и CR
пересекают описанную окружность в точках A1, B1 и C1. Докажите,
что точки пересечения прямых MA1 и BC, MB1 и CA, MC1
и AB лежат на одной прямой, проходящей через точку R.
|
Страница: << 1 2 [Всего задач: 8]
Квадрат разбит на n² ≥ 4 прямоугольников 2(n – 1) прямыми, из которых n – 1 параллельны одной стороне квадрата, а остальные n – 1 – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).
Окружность ω вписана в треугольник ABC, в котором AB < AC. Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма XY + XZ не зависит от выбора точки X.
Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство 1/a² + 1/b² + 1/c² + 1/d² ≤ 1/a²b²c²d².
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке