ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наименьшее значение выражения а4а2 – 2а.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



Задача 66424

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

На сторонах AB и BC равностороннего треугольника ABC отмечены точки D и K соответственно, а на стороне AC отмечены точки E и M так, что DA + AE = KC + CM = AB. Отрезки DM и KE пересекаются. Найдите угол между ними.
Прислать комментарий     Решение


Задача 66425

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 6,7,8

Есть 2018 гирек массами 1 г, 2 г, ..., 2018 г. Заяц положил на одну чашу весов две гирьки. Волк хотел двумя другими гирьками на другой чаше их уравновесить, но не смог. Какие гирьки мог взять Заяц?
Прислать комментарий     Решение


Задача 66426

Темы:   [ Формулы сокращенного умножения ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Найдите наименьшее значение выражения а4а2 – 2а.
Прислать комментарий     Решение


Задача 66372

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

На гипотенузе прямоугольного треугольника ABC отметили точку D так, что ВD = AС. Докажите, что в треугольнике AСD биссектриса AL, медиана СM и высота DH пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66294

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9,10

В треугольнике АВС  ∠В = 110°,  ∠С = 50°.  На стороне АВ выбрана такая точка Р, что  ∠РСВ = 30°,  а на стороне АС – такая точка Q, что
ABQ = 40°.  Найдите угол QPC.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .