Страница: 1
2 3 4 5 6 >> [Всего задач: 29]
Задача
66529
(#1)
|
|
Сложность: 3 Классы: 7,8,9
|
Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)
Задача
66535
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Король вызвал двух мудрецов и объявил им задание:
первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу
называет лишь четвертое по величине из этих чисел, после
чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Задача
66605
(#1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
Задача
66609
(#1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Задача
66613
(#1)
|
|
Сложность: 4 Классы: 10,11
|
Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11.
Страница: 1
2 3 4 5 6 >> [Всего задач: 29]