ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть точки P и Q изогонально сопряжены относительно треугольника ABC. Точка A1, лежащая на дуге BC описанной около треугольника окружности ω, удовлетворяет условию ∠BA1P=∠CA1Q. Точки B1 и C1 определены аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. |
Страница: 1 2 >> [Всего задач: 8]
В треугольнике ABC ∠A=45∘. Точка A′ диаметрально противоположна A на описанной окружности треугольника. Точки E, F на сторонах AB, AC соответственно таковы. что A′B=BE, A′C=CF. Пусть K – вторая точка пересечения окружностей AEF и ABC. Докажите, что прямая EF делит пополам отрезок A′K.
Пусть A1, B1, C1 – середины сторон BC, AC и AB треугольника ABC, K – основание высоты, проведенной из вершины A, а L – точка касания вписанной окружности γ со стороной BC. Описанные окружности треугольников LKB1 и A1LC1 вторично пересекают прямую B1C1 в точках X и Y соответственно. Окружность γ пересекает эту прямую в точках Z и T. Докажите, что XZ=YT.
Пусть точки P и Q изогонально сопряжены относительно треугольника ABC. Точка A1, лежащая на дуге BC описанной около треугольника окружности ω, удовлетворяет условию ∠BA1P=∠CA1Q. Точки B1 и C1 определены аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Пусть AA1, BB1, CC1 – высоты треугольника ABC; A0, C0 – точки пересечения описанной окружности треугольника A1BC1 с прямыми A1B1 и C1B1 соответственно. Докажите, что прямые AA0 и CC0 пересекаются на медиане треугольника ABC или параллельны ей.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке