ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей? Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя. Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9. Две окружности имеют радиусы R1 и R2, а расстояние
между их центрами равно d. Докажите, что эти окружности
ортогональны тогда и только тогда, когда
d2 = R12 + R22.
В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр. 100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом? Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены. Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел. Пользуясь схемой Горнера, разложите x4 + 2x3 – 3x2 – 4x + 1 по степеням x + 1. Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.). Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D. В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$. |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]
В остроугольном треугольнике $ABC$ ($AC>AB$ ) провели биссектрису $AK$ и медиану $AT$, последнюю продлили до пересечения с описанной окружностью треугольника в точке $D$. Точка $F$ симметрична $K$ относительно $T$. Даны углы треугольника $ABC$, найдите угол $FDA$.
Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
В пространстве даны несколько точек и несколько плоскостей. Известно, что через любые две точки проходят ровно две плоскости, а каждая плоскость содержит не меньше четырех точек. Верно ли, что все точки лежат на одной прямой?
Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке