ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках? Можно ли расставить на листе клетчатой бумаги крестики и нолики так, чтобы ни на одной горизонтали, вертикали и диагонали нельзя было встретить три одинаковых знака подряд? Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°. В трапеции ABCD на боковой стороне AB дана точка K. Через точку A провели прямую l, параллельную прямой KC, а через точку B – прямую m, параллельную прямой KD. Докажите, что точка пересечения прямых l и m лежит на стороне CD. Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки?
Группа из восьми теннисистов раз в год разыгрывала кубок по
олимпийской системе (игроки по жребию делятся на 4 пары;
выигравшие делятся по жребию на две пары, играющие в полуфинале; их победители играют финальную партию).
Через несколько лет оказалось, что каждый с каждым сыграл ровно один раз.
Докажите, что
Каждый из квадратных трёхчленов $P(x)$, $Q(x)$ и $P(x)+Q(x)$ с действительными коэффициентами имеет кратный корень. Обязательно ли все эти корни совпадают?
На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$.
Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке