Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 51]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Даны $n$ натуральных чисел. Боря для каждой пары этих чисел записал на чёрную доску их среднее арифметическое, а на белую доску — их среднее геометрическое,
и для каждой пары хотя бы одно из этих двух средних было целым. Докажите, что хотя бы на одной из досок все числа целые.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Может ли произведение каких-то 9 последовательных натуральных чисел равняться сумме (может быть, других) 9 последовательных натуральных чисел?
|
|
Сложность: 3 Классы: 8,9,10
|
В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?
|
|
Сложность: 3 Классы: 8,9,10
|
У Тани есть 4 одинаковые с виду гири, массы которых равны 1001, 1002, 1004 и 1005 г (неизвестно, где какая), и чашечные весы (показывающие, какая из двух чаш перевесила или что имеет место равенство). Может ли Таня за 4 взвешивания гарантированно определить, где какая гиря? (Следующее взвешивание выбирается по результатам прошедших.)
а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных?
б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 51]