ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В красном ящике 100 красных шаров, а в зелёном ящике – 100 зелёных шаров. Восемь красных шаров переложили в зелёный ящик, а потом столько же шаров переложили из зелёного ящика в красный. Шары в ящиках хорошенько перемешали. Что теперь больше: вероятность вытащить наудачу из красного ящика зелёный шар или из зелёного ящика красный? На доске написаны в порядке возрастания два натуральных числа x и y (x ≤ y). Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и y – x, записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке? Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$. Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней. Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны. Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число. Напомним, что обыкновенная дробь — это отношение целого числа к натуральному. Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.) |
Страница: 1 [Всего задач: 5]
В кабинете сидят N нерях, у каждого на его столе скопилось ненулевое количество мусора. Неряхи выходят обедать по одному (после возвращения предыдущего), а в это время каждый из остальных перекладывает половину мусора со своего стола на стол вышедшего. Может ли случиться, что после того, как все пообедали, количество мусора на столах ни у кого не изменится, если а) N = 2; б) N = 10?
В треугольнике ABC провели медианы BK и CN, пересекающиеся в точке M. Какое наибольшее количество сторон четырёхугольника ANMK может иметь длину 1?
На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.)
Для произвольного числа $x$ рассмотрим сумму $$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$ Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
На каждой клетке доски 5×5 лежит по одной монете, все монеты внешне одинаковы. Среди них ровно 2 монеты фальшивые, они одинакового веса и легче настоящих, которые тоже весят одинаково. Фальшивые монеты лежат в клетках, имеющих ровно одну общую вершину. Можно ли за одно взвешивание на чашечных весах без гирь гарантированно найти а) 13 настоящих монет; б) 15 настоящих монет; в) 17 настоящих монет?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке