ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство  (q1q2)² + (p1p2)(p1q2p2q1) < 0,  то квадратные трёхчлены
x² + p1x + q1  и  x² + p2x + q2  имеют вещественные корни, причём между двумя корнями каждого из них лежит корень другого.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



Задача 73637  (#М102)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Метод ГМТ ]
[ Системы точек ]
Сложность: 6
Классы: 8,9,10,11

Автор: Гурари В.

Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек A и B существует такая точка С этого множества, что треугольник ABC равносторонний. Сколько точек может содержать такое множество?
Прислать комментарий     Решение


Задача 73638  (#М103)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Замена переменных ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 9,10,11

Исследуйте, сколько решений имеет система уравнений
    x² + y² + xy = a,
    x² – y² = b,
где а и b – некоторые данные действительные числа.

Прислать комментарий     Решение

Задача 78791  (#М105)

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

а) Доказать, что сумма цифр числа K не более чем в 8 раз превосходит сумму цифр числа 8K.
б) Для каких натуральных k существует такое положительное число ck, что  ck  для всех натуральных N? Найдите наибольшее подходящее значение ck.

Прислать комментарий     Решение

Задача 73641  (#М106)

Темы:   [ Исследование квадратного трехчлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 5-
Классы: 9,10,11

Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство  (q1q2)² + (p1p2)(p1q2p2q1) < 0,  то квадратные трёхчлены
x² + p1x + q1  и  x² + p2x + q2  имеют вещественные корни, причём между двумя корнями каждого из них лежит корень другого.

Прислать комментарий     Решение

Задача 73642  (#М107)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9

а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство  A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.

б) Докажите, что для треугольника верно и обратное утверждение: если на стороне A1A2 выбраны точки B1 и D2, на стороне A2A3 – точки B2 и D3, а на стороне A3A1 – точки B3 и D1 так, что  A1B1·A2B2·A3B3 = A1D1·A2D2· A3D3,  то, построив параллелограммы A1B1C1D1, A2B2C2D2 и A3B3C3D3, получим прямые A1C1, A2C2 и A3C3, пересекающиеся в одной точке.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .