ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 57]      



Задача 73621  (#М86)

Темы:   [ Замощения костями домино и плитками ]
[ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.
б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").

Прислать комментарий     Решение

Задача 56681  (#М87)

Темы:   [ Три окружности одного радиуса ]
[ Ромбы. Признаки и свойства ]
[ Удвоение медианы ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10

Три окружности радиуса R проходят через точку HA, B и C — точки их попарного пересечения, отличные от H. Докажите, что:
а) H — точка пересечения высот треугольника ABC;
б) радиус описанной окружности треугольника ABC тоже равен R.
Прислать комментарий     Решение


Задача 73623  (#М88)

Темы:   [ Теорема Виета ]
[ Арифметическая прогрессия ]
[ Кубические многочлены ]
Сложность: 3+
Классы: 9,10,11

Какому условию должны удовлетворять коэффициенты a, b, c уравнения  x³ + ax² + bx + c,  чтобы три его корня составляли арифметическую прогрессию?

Прислать комментарий     Решение

Задача 73624  (#М89)

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 7,8,9

Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.
Прислать комментарий     Решение


Задача 73625  (#М90)

Темы:   [ Иррациональные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Если x1 < x2 < x3 < ... < xn натуральные числа, то сумма n – 1 дробей, k-я из которых, где k < n, равна отношению квадратного корня из разности xk+1 - xk к числу xk+1, меньше суммы чисел 1, 1/2, 1/3, ..., 1/n2. Докажите это.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .