ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a, b, c, а) S ≤ ab + cd; б) S ≤ ac + bd. в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность. Решение |
Страница: 1 [Всего задач: 5]
Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?
а) S ≤ ab + cd; б) S ≤ ac + bd. в) Докажите, что если хотя бы в одном из этих неравенств достигается равенство, то четырёхугольник можно вписать в окружность.
m и n – натуральные числа, m < n. Докажите, что
Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.
А) приписать на конце Б) приписать на конце В) разделить на 2 (если число чётно). Например, если с числом 4 проделаем последовательно операции В, В, А а) Из числа 4 получите б)* Докажите, что из числа 4 можно получить любое натуральное число.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|