ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
соревнования:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что 11551958 + 341958 ≠ n², где n – целое. На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно? Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности. Найти все действительные решения системы
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3
На круглой поляне радиуса R растут три круглые сосны одинакового диаметра.
Центры их стволов находятся на расстоянии
Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого ab ≡ 1 (mod p). Докажите, что при любом простом p Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое. Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7958]
В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:
По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?
Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.
Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.
Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.
Найти геометрическое место точек, координаты которых (x, y) удовлетворяют соотношению sin(x+y) = 0.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 7958]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке