ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 76500

Тема:   [ Построения с помощью вычислений ]
Сложность: 4+
Классы: 10,11

Построить прямоугольный треугольник по двум медианам, проведённым к катетам.
Прислать комментарий     Решение


Задача 109152

Темы:   [ Тригонометрические уравнения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4+
Классы: 9,10,11

Сколько корней имеет уравнение sin x=x/100 ?
Прислать комментарий     Решение


Задача 76489

Тема:   [ Разные задачи на разрезания ]
Сложность: 5
Классы: 8,9

Доказать, что из 5 попарно различных по величине квадратов нельзя сложить прямоугольник.
Прислать комментарий     Решение


Задача 76497

Темы:   [ Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 5
Классы: 9,10,11

Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

Прислать комментарий     Решение

Задача 76495

Тема:   [ Разные задачи на разрезания ]
Сложность: 6
Классы: 10,11

Доказать, что из шести попарно различных по величине квадратов нельзя сложить прямоугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .