Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если  MM' = NN',  то  BC || AD.

Вниз   Решение


Два равных диска насажены на одну ось. На окружности каждого из них по кругу на одинаковых расстояниях в произвольном порядке расставлены числа 1, 2, 3, ..., 20. Всегда ли можно повернуть один диск относительно другого так, чтобы никакие два одинаковых числа не стояли друг против друга?

ВверхВниз   Решение


В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

ВверхВниз   Решение


Найти последнюю цифру числа  71988 + 91988.

ВверхВниз   Решение


Найти последнюю цифру числа  1·2 + 2·3 + ... + 999·1000.

ВверхВниз   Решение


Решите систему неравенств
    |x| < |y – z + t|,
    |y| < |x – z + t|,
    |z| < |x – y + t|,
    |t| < |x – y + z|.

ВверхВниз   Решение


Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.
Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

ВверхВниз   Решение


Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

ВверхВниз   Решение


В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

ВверхВниз   Решение


Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.

ВверхВниз   Решение


В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78110  (#1)

Темы:   [ ГМТ с ненулевой площадью ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке.
Прислать комментарий     Решение


Задача 78111  (#2)

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Радиолампа имеет семь контактов, расположенных по кругу и включаемых в штепсель, имеющий семь отверстий. Можно ли так занумеровать контакты лампы и отверстия штепселя, чтобы при любом включении лампы хотя бы один контакт попал на свое место (то есть в отверстие с тем же номером)?

Прислать комментарий     Решение

Задача 78112  (#3)

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?
Прислать комментарий     Решение


Задача 78113  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольник вписана окружность, и точки касания её со сторонами треугольника соединены между собой. В полученный таким образом треугольник вписана новая окружность, точки касания которой со сторонами являются вершинами третьего треугольника, имеющего те же углы, что и первоначальный треугольник. Найти эти углы.

Прислать комментарий     Решение

Задача 78114  (#5)

Темы:   [ Числа Фибоначчи ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

Дана последовательность чисел 1, 2, 3, 5, 8, 13, 21, ..., в которой каждое число, начиная с третьего, равно сумме двух предыдущих. В этой последовательности выбрано восемь чисел подряд. Докажите, что их сумма не равна никакому числу рассматриваемой последовательности.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .