ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что 11551958 + 341958 ≠ n², где n – целое. На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно? Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности. Найти все действительные решения системы
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3 |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Стороны параллелограмма равны a и b. Найти отношение объёмов тел, полученных при вращении параллелограмма вокруг стороны a и вокруг стороны b.
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3
Дана следующая треугольная таблица чисел: Доказать, что число, стоящее в самой нижней строчке, делится на 1958.
Внутри треугольника ABC взята точка O. На лучах OA, OB и OC построены векторы единичной длины.
Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке