ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 78572

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 7,8,9,10

Имеется 11 мешков монет. В 10 из них монеты настоящие, а в одном – все монеты фальшивые. Все настоящие монеты одного веса, все фальшивые монеты – также одного, но другого веса. Имеются весы, с помощью которых можно определить, какой из двух грузов тяжелее и на сколько. Двумя взвешиваниями определить, в каком мешке фальшивые монеты.

Прислать комментарий     Решение

Задача 78576

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 10,11

На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?

Прислать комментарий     Решение

Задача 78566

Темы:   [ Метод ГМТ в пространстве ]
[ Круглые тела (прочее) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O.
Прислать комментарий     Решение


Задача 78582

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
[ Построения в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Дана плоскость P и две точки A и B по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из P наименьший круг.

Прислать комментарий     Решение

Задача 78575

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .