ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Используя результат задачи 61403, докажите неравенства:
в) В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°. Докажите, что
r/R
Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.
Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC. Докажите, что проекции основания высоты треугольника на стороны,
ее заключающие, и на две другие высоты лежат на одной прямой.
Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. |
Страница: 1 [Всего задач: 4]
С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей K = p1p2...pn; затем вычисляется сумма p1 + p2 + ... + pn + 1. С полученным числом производится то же самое, и т.д.
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3.
Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке