ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Профессии членов семьи. В семье Семеновых 5 человек: муж, жена, их сын, сестра мужа и отец жены. Все они работают. Один — инженер, другой — юрист, третий — слесарь, четвертый — экономист, пятый — учитель. Вот что еще известно о них. Юрист и учитель не кровные родственники. Слесарь — хороший спортсмен. Он пошел по стопам экономиста и играет в футбол за сборную завода. Инженер старше жены своего брата, но моложе, чем учитель. Экономист старше, чем слесарь. Назовите профессии каждого члена семьи Семеновых. Радиус вписанной окружности треугольника равен 1, длины
высот — целые числа. Докажите, что треугольник правильный.
Что больше 200! или 100200? Найти наибольшее значение, которое может принимать выражение aek – afh + bfg – bdk + cdh – ceg, если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1. Определим последовательности чисел (xn) и
(dn) условиями x1 = 1, xn+1 = [ На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться? Пусть z = e2πi/n = cos 2π/n + i sin 2π/n. Для произвольного целого a вычислите суммы Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки. |
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика.
Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке