ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 79282

Темы:   [ Системы точек ]
[ Касающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 7,8,9

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 79270

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 79275

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 79281

Тема:   [ Процессы и операции ]
Сложность: 4-
Классы: 8

Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика.
Прислать комментарий     Решение


Задача 79285

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .