Страница:
<< 1 2 3
4 5 >> [Всего задач: 21]
|
|
Сложность: 4- Классы: 7,8,9
|
На плоскости расположено
N точек. Отметим середины всевозможных отрезков с
концами в этих точках. Какое наименьшее число отмеченных точек может
получиться?
|
|
Сложность: 4- Классы: 8,9,10
|
Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили
одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть
относительно другой так, что в местах сломанных зубцов одной шестерёнки
окажутся целые зубцы второй шестерёнки.
|
|
Сложность: 4- Классы: 8,9,10
|
Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили
одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть
относительно другой так, что в местах сломанных зубцов одной шестерёнки
окажутся целые зубцы второй шестерёнки.
Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий
неограниченным запасом шариков, может за один ход взять по одному шарику из
каждой кучки или же добавить из своего запаса в одну из кучек столько шариков,
сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться
того, что в каждой кучке не останется ни одного шарика.
|
|
Сложность: 4- Классы: 7,8,9
|
Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.
Страница:
<< 1 2 3
4 5 >> [Всего задач: 21]