ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите наименьшее значение функции y = 8x-2 sin x+6 на отрезке [0;] .

Вниз   Решение


Докажите, что число    не является кубом никакого целого числа.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?

ВверхВниз   Решение


Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

ВверхВниз   Решение


От пирога, имеющего форму выпуклого пятиугольника, можно отрезать треугольный кусок по линии, пересекающей в точках, отличных от вершин, две соседние стороны; от оставшейся части пирога — следующий кусок (таким же образом) и т.д. В какие точки пирога можно воткнуть свечку, чтобы её нельзя было отрезать?

ВверхВниз   Решение


а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?

ВверхВниз   Решение


Какое из двух чисел больше:

  а)     (n двоек) или   (n − 1  тройка);

  б)     (n троек) или     (n − 1  четвёрка).

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 79296

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Натуральные числа a, b, c таковы, что числа  p = bc + a,  q = ab + c,  r = ca + b  простые. Доказать, что два из чисел p, q, r равны между собой.

Прислать комментарий     Решение

Задача 79294

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Найти все действительные решения уравнения с четырьмя неизвестными:   x² + y² + z² + t² = x(y + z + t).

Прислать комментарий     Решение

Задача 79299

Темы:   [ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8

Какое из двух чисел больше:

  а)     (100 двоек) или     (99 троек);

  б)     (100 троек) или     (99 четвёрок).

Прислать комментарий     Решение

Задача 79300

Темы:   [ Вписанные и описанные многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9,10

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны 120o. Доказать, что найдутся две его стороны, имеющие одинаковую длину.
Прислать комментарий     Решение


Задача 79303

Темы:   [ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Какое из двух чисел больше:

  а)     (n двоек) или   (n − 1  тройка);

  б)     (n троек) или     (n − 1  четвёрка).

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .