Страница: 1 [Всего задач: 5]
Задача
79318
(#1)
|
|
Сложность: 3+ Классы: 8
|
Существует ли такое натуральное число
n, что сумма цифр числа
n2 равна
100?
Задача
79321
(#2)
|
|
Сложность: 4- Классы: 7,8,9,10
|
Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число.
Докажите, что сумма длин всех перегородок делится на 4.
Задача
79322
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
На сферическом Солнце обнаружено конечное число круглых пятен, каждое из
которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются
замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой.
Доказать, что на Солнце найдутся две диаметрально противоположные точки, не
покрытые пятнами.
Задача
79320
(#4)
|
|
Сложность: 4- Классы: 8,9
|
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В
каждой строчке отмечены два наибольших числа красным цветом, а в каждом столбце
отмечены два наибольших числа синим цветом. Доказать, что не менее трёх чисел
отмечены в таблице как красным, так и синим цветом.
Задача
79323
(#5)
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости задано конечное множество точек. Доказать, что в нём найдётся
точка, у которой имеется не более трёх ближайших к ней точек из этого же
множества.
Страница: 1 [Всего задач: 5]