ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки. В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством. Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1. |
Страница: 1 [Всего задач: 5]
В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Существуют ли а) 6, б)15, в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма a + b делится на разность a − b?
В волейбольном турнире каждые две команды сыграли по одному матчу.
В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке