Страница:
<< 1 2 3 4 [Всего задач: 20]
|
|
Сложность: 4+ Классы: 9,10
|
Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли
бурьяном. Известно, что бурьян за год распространяется на те и только те
участки, у каждого из которых не менее двух соседних участков уже поражены
бурьяном (участки соседние, если они имеют общую сторону). Докажите, что
полностью все поле бурьяном не зарастёт.
|
|
Сложность: 4+ Классы: 8,9,10
|
Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых
делителей.
Докажите, что произведение некоторых четырёх из этих чисел является
квадратом натурального числа.
|
|
Сложность: 4+ Классы: 9,10,11
|
Биссектриса угла
A треугольника
ABC продолжена до пересечения в
D с описанной вокруг него окружностью. Докажите, что
AD > 1/2 (
AB +
AC).
|
|
Сложность: 5- Классы: 10,11
|
Найдите минимум по всем α, β максимума функции
y(x) = |cos x + α cos 2x + β cos 3x|.
|
|
Сложность: 5 Классы: 9,10,11
|
На координатной плоскости нарисованы круги радиусом 1/14 с центрами в каждой
точке, у которой обе координаты — целые числа. Докажите, что любая окружность
радиусом 100 пересечёт хотя бы один нарисованный круг.
Страница:
<< 1 2 3 4 [Всего задач: 20]