ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что при любых натуральных m и n число  10m + 1  не делится на  10n − 1.

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]      



Задача 79637

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 2+
Классы: 7,8

На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника.
Прислать комментарий     Решение


Задача 79647

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8

Расположите в порядке возрастания числа: 2222, 2222, 2222.

Прислать комментарий     Решение

Задача 79650

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8

Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

Прислать комментарий     Решение

Задача 86478

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 7,8

Доказать, что при любых натуральных m и n число  10m + 1  не делится на  10n − 1.

Прислать комментарий     Решение

Задача 86480

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8

Доказать, что числа  27x + 4  и  18x + 3  взаимно просты при любом натуральном x.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .