Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Вниз   Решение


В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

ВверхВниз   Решение


В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?

ВверхВниз   Решение


а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.

ВверхВниз   Решение


Автор: Дидин М.

Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Докажите, что сумма углов PKQ и PNQ равна 180°.

ВверхВниз   Решение


Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.

ВверхВниз   Решение


Автор: Анджанс А.

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 98143  (#1)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Анджанс А.

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

Прислать комментарий     Решение

Задача 108059  (#2)

Темы:   [ Перенос помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На каждой стороне параллелограмма выбрано по точке (выбранные точки отличны от вершин параллелограмма). Точки, лежащие на соседних (имеющих общую вершину) сторонах, соединены отрезками. Докажите, что центры описанных окружностей четырёх получившихся треугольников – вершины параллелограмма.

Прислать комментарий     Решение

Задача 98145  (#3)

Тема:   [ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9

Автор: Фомин Д.

Дано натуральное число M. Докажите, что существует число, кратное M, сумма цифр которого (в десятичной записи) нечётна.

Прислать комментарий     Решение

Задача 108060  (#4)

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Назаров Ф.

а) В треугольнике ABC угол A больше угла B. Докажите, что BC > ½ AB.
б) В выпуклом четырёхугольнике ABCD угол A больше угла C, а угол D больше угла B. Докажите, что BC > ½ AD.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .