|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9. Назовём точку внутри треугольника хорошей, если три проходящие через неё чевианы равны. В треугольнике ABC стороны AB и BC равны, а количество хороших точек нечётно. Чему оно может быть равно? Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки? На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки? На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы Докажите, что составное число n всегда имеет делитель, больший 1, но не больший На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх? В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок. Пусть (n, 10) = 1, m < n, (m, n) = 1, и t – наименьшее число, при котором 10t – 1 делится на n. Найдите все такие тройки действительных чисел x, y, z, что 1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)², 1 + z4 ≤ 2(x – y)². На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Существуют ли 100 таких натуральных чисел, что их сумма равна их наименьшему
общему кратному?
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
а) Существуют ли четыре таких различных натуральных числа, что
сумма каждых трёх из них есть простое число?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|