Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Вниз   Решение


Автор: Фольклор

Квадрат целого числа имеет вид ...09 (оканчивается цифрами 0 и 9). Докажите, что третья справа цифра чётна.

ВверхВниз   Решение


Покажите, как разбить пространство
  а) на одинаковые тетраэдры,
  б) на одинаковые равногранные тетраэдры
(тетраэдр называется равногранным, если все его грани – равные треугольники).

ВверхВниз   Решение


Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.

ВверхВниз   Решение


Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

ВверхВниз   Решение


Автор: Фольклор

На плоскости нарисован чёрный равносторонний треугольник. Имеется девять треугольных плиток того же размера и той же формы. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного треугольника (хотя бы одну точку внутри него). Как это сделать?

ВверхВниз   Решение


Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

ВверхВниз   Решение


Автор: Фольклор

Числа  1, 2, 3, ..., n  записываются в некотором порядке:  a1, a2, a3, ..., an.  Берётся сумма  S = a1/1 + a2/2 + ... + an/n.  Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках  a1, a2, a3, ..., an)  встретились все целые числа от n до  n + 100.

 

ВверхВниз   Решение


Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

ВверхВниз   Решение


На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 

ВверхВниз   Решение


Три косца за три дня скосили траву с трёх гектаров. С какой площади скосят траву пять косцов за пять дней?

ВверхВниз   Решение


Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98416  (#1)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 8,9

Пусть a, b, c – натуральные числа.
а) Докажите, что если  НОК(a, a + 5) = HOK(b, b + 5),  то  a = b.
б) Могут ли  НОК(a, b)  и  НОК(а + с, b + с)  быть равны?

Прислать комментарий     Решение

Задача 98406  (#2)

Темы:   [ Раскраски ]
[ Разные задачи на разрезания ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3-
Классы: 7,8,9

У Игоря и Вали есть по белому квадрату 8×8, разбитому на клетки 1×1. Они закрасили по одинаковому числу клеток на своих квадратах в синий цвет. Докажите, что удастся так разрезать эти квадраты на доминошки 2×1, что и из доминошек Игоря и из доминошек Вали можно будет сложить по квадрату 8×8 с одной и той же синей картинкой.

Прислать комментарий     Решение

Задача 108085  (#3)

Темы:   [ Описанные четырехугольники ]
[ Перенос помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 98408  (#4)

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Хорды и секущие (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Прислать комментарий     Решение

Задача 98409  (#5)

Темы:   [ Правило произведения ]
[ Степень вершины ]
[ Связность и разложение на связные компоненты ]
Сложность: 4
Классы: 8,9

Автор: Гришин А.

Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .