|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве? Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
a ≡ 68 (mod 1967), a ≡ 69 (mod 1968). Найти остаток от деления a на 14.
Докажите, что множество простых чисел вида p = 6k + 5 бесконечно.
Доказать, что 3n + 1 не делится на 10100.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
m и n взаимно просты, b – произвольное целое число. Доказать, что числа b, b + n, b + 2n, ..., b + (n – 1)n дают все возможные остатки по модулю m.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|